Министерство культуры Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ КИНО И ТЕЛЕВИДЕНИЯ»

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ Е. В. САЗОНОВА ректор

Сертифкат: 00eec2e5b252a0885bc682f9fa99feef8b

Основание: УТВЕРЖДАЮ

Дата утверждения: 19 июня 2024 г.

Рабочая программа дисциплины

«Киносъемочная оптика»

Наименование ОПОП: Телеоператор

Специальность: 55.05.03 Кинооператорство

Форма обучения: очная

Факультет: экранных искусств

Кафедра: операторского искусства

Общая трудоемкость дисциплины составляет 144 академ. час. / 4 зач.ед.

в том числе: контактная работа: 69,8 час. самостоятельная работа: 74,2 час.

Вид(ы) текущего контроля	Семестр (курс)
контрольная работа (практикум)	3
выполнение контрольной работы	3
выступление на научной конференции по	2
выступление на научной конференции по теме дисциплины	3
практикум (выполнение и защита лабораторных работ)	2,3
присутствие на занятии	2,3
тест	2,3
Вид(ы) промежуточной аттестации, курсовые работы/проекты	Семестр (курс)
зачет с оценкой	2,3

Рабочая программа дисциплины «Киносъемочная оптика» составлена:

- в соответствии с требованиями Федеральным государственным образовательным стандартом высшего образования Федеральный государственный образовательный стандарт высшего образования специалитет по специальности 55.05.03 Кинооператорство (приказ Минобрнауки России от 23.08.2017 г. № 821)
- на основании учебного плана и карты компетенций основной профессиональной образовательной программы «Телеоператор» по специальности 55.05.03 Кинооператорство

Составитель(и):

Патрикеева Е.Ю., Ст. преп. кафедры

Рецензент(ы):

Двуреченский С.А., Генеральный директор ООО "Престиж"

Рабочая программа дисциплины рассмотрена и одобрена на заседании кафедры операторского искусства

Рабочая программа дисциплины одобрена Советом факультета экранных искусств

СОГЛАСОВАНО

Руководитель ОПОП Н.В. Волков

Начальник УМУ С.Л. Филипенкова

УКАЗАННАЯ ЛИТЕРАТУРА ИМЕЕТСЯ В НАЛИЧИИ В БИБЛИОТЕКЕ ИНСТИТУТА ИЛИ ЭБС

Заведующий библиотекой Н.Н. Никитина

1. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ

1.1. Цели и задачи дисциплины

Цель(и) дисциплины:

формирование у студентов способности создания и публичного показа игровых телевизионных театральных постановок, спортивных телевизионных передач, документальных фильмов, сюжетов для телепериодики, видеоочерков, видеорепортажей, ток-шоу, концертов, используя технику кинопортретной съемки, комбинированных и специальных съемок, цифровые технологии и компьютерную графику; средства операторской съемочной техники; современную технику репортажной съемки; технику съемки на видеоаппаратуру, а также на 35-миллиметровых, 16-миллиметровых: черно-белой, цветной, обратимой кинопленках.

Задачи дисциплины:

- изучить теорию образования и восприятия кино- и телевизионного изображения, принципы устройства и действия оптических систем;
- научиться использовать современную киносъемочную и телевизионную оптику для решения различных художественных задач;
- освоить методику исследования и приборы для определения качественных характеристик объективов, светофильтров и других оптических деталей.

1.2. Место и роль дисциплины в структуре ОПОП ВО

Дисциплина относится к части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)».

Дисциплина основывается на знаниях и умениях, приобретенных в ходе изучения предшествующих дисциплин/прохождения практик и взаимосвязана с параллельно изучаемыми дисциплинами:

Киносветотехника

Кинофотопроцессы и материалы

Освоение дисциплины необходимо как предшествующее для дисциплин и/или практик:

Практика по освоению технологии кино-, телепроизводства

Квалиметрия кинопроизводства

Техника и технология производства видеофильма

Выполнение и защита выпускной квалификационной работы

Техника и технология телевизионного производства

1.3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Профессиональные компетенции

Вид деятельности: творческо-производственный.

ПК-4 — Способен ориентироваться в технологических процессах и технических средствах, используемых в кино-и телепроизводстве.

ПК-4.1 — Анализирует и подбирает технические средства и технологии, используемые в кино-и телепроизводстве.

Знает: основные типы, параметры и свойства съемочных объективов.

Умеет: использовать технику освещения и съемки на 35-мм, 16-мм киноплёнке, а также на видеоаппаратуре в кино-, телепавильоне, интерьерах и на натуре навыками творческо-постановочной подготовки и съемки фил

Владеет: навыками использования искусств и средств съемочной и операторской техники.

2. СТРУКТУРА, ОБЪЕМ И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) В КОМПЕТЕНТНОСТНОМ ФОРМАТЕ

2.1. Структура и трудоемкость учебной дисциплины

Общая трудоемкость дисциплины составляет 144 академ. час. / 4 зач.ед.

69.8 час. в том числе: контактная работа:

74,2 час. самостоятельная работа:

Вид(ы) текущего контроля	Семестр (курс)
контрольная работа	3
Вид(ы) промежуточной аттестации,	Семестр (курс)
курсовые работы/проекты	
зачет с оценкой	2,3

Распределение трудоемкости по периодам обучения:

Семестр	2	3	Итого
Лекции	16	16	32
Лабораторные	16	16	32
Консультации	2	3	5
Самостоятельная работа	29	28	57
Самостоятельная работа	8,6	8,6	17,2
во время сессии			
Итого	71,6	71,6	143,2

2.2. Содержание учебной дисциплины

Раздел 1. ОСНОВЫ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ Тема 1. 1. ОСНОВЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

Основные понятия и законы геометрической оптики. Полное отражение. Волоконные световоды.

Тема 1. 2. ИДЕАЛЬНАЯ ОПТИЧЕСКАЯ СИСТЕМА И ЕЁ СВОЙСТВА

Кардинальные элементы оптической системы. Фокусное расстояние и оптическая сила линз, формула линзы. Основные зависимости между положениями и размерами предмета и изображения. Построение хода лучей через идеальную систему. Сложные оптические системы. Основные типы оптических систем.

Тема 1. 3. ДЕТАЛИ ОПТИЧЕСКИХ СИСТЕМ

Линзы, формы линз. Линза Френеля. Плоские, сферические и асферические зеркала. Плоскопараллельная пластинка, призмы, клинья. Волоконная оптика. Растровые оптические системы.

Тема 1. 4. ОГРАНИЧЕНИЕ ПУЧКОВ ЛУЧЕЙ В ОПТИЧЕСКИХ СИСТЕМАХ И ОСВЕЩЁННОСТЬ ИЗОБРАЖЕНИЯ В ЦЕНТРЕ И НА КРАЮ

Ограничение апертуры. Апертурная диафрагма. Входной и выходной зрачки. Числовая апертура. Относительное отверстие и светосила оптической системы. Градуировка шкал диафрагм в эффективных значениях. Ограничение поля зрения. Линейное и угловое поля оптической системы. Виньетирование.

Тема 1. 5. ГЛУБИНА РЕЗКО ИЗОБРАЖАЕМОГО ПРОСТРАНСТВА И ГЛУБИНА РЕЗКОСТИ

Факторы, обуславливающие глубину резко изображаемого пространства. Гиперфокальное расстояние. Расчёты, связанные с глубиной резко изображаемого пространства. Влияние фокусного расстояния, относительного отверстия и дистанции наводки на глубину резко изображаемого пространства.

Тема 1. АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ

Понятие об аберрациях. Монохроматические аберрации III порядка: сферическая аберрация, кома, астигматизм и кривизна поверхности изображения, дисторсия. Хроматические аберрации: хроматизм положения, хроматизм увеличения. Понятие о волновых и термооптических аберрациях. Коррекция аберраций, допустимые значения аберраций в различных оптических системах. Объектив - апланат, анастигмат, планар, ортоскопический объектив.

тема 2. ОЦЕНКА КАЧЕСТВА ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ ОБЪЕКТИВА

Классические критерии качества изображения - предел разрешения, разрешающая способность; фотографическая разрешающая способность. Объективные методы оценки качества изображения. Функция передачи модуляции и её определение.

Раздел 3. СЪЕМОЧНЫЕ ОБЪЕКТИВЫ ДЛЯ ФОТОГРАФИИ, КИНО И ТЕЛЕВИДЕНИЯ Тема 3. 1. ПРИНЦИПЫ УСТРОЙСТВА И ДЕЙСТВИЯ ОПТИЧЕСКИХ СИСТЕМ, ОБРАЗОВАНИЕ И ВОСПРИЯТИЕ КИНОИЗОБРАЖЕНИЯ

Основные типы оптических систем приборов и их технические характеристики.

Тема 3. 2. ГЛАЗ КАК ОПТИЧЕСКИЙ ПРИБОР

Глаз как оптическая система. Недостатки глаза и их коррекция.

Тема 3. 3. ФОТОГРАФИЧЕСКИЕ ОБЪЕКТИВЫ

Оптические схемы объективов. Технические характеристики объективов. Классификация объективов.

Тема 3. 4. ОСНОВНЫЕ ПАРАМЕТРЫ И СВОЙСТВА КИНОСЪЁМОЧНЫХ ОБЪЕКТИВОВ

Основные технические характеристики фотографических и киносъёмочных объективов. Типы объективов. Современные киносъёмочные объективы.

Тема 3. 5. ВЛИЯНИЕ ТЕХНИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТИВА НА ХАРАКТЕРИСТИКИ ИЗОБРАЖЕНИЯ

Влияние фокусного расстояния. Влияние относительного отверстия. Влияние углового поля. Глубина резко изображаемого пространства и глубина резкости. Влияние фокусного расстояния, относительного отверстия и дистанции съемки на глубину резко изображаемого пространства.

Тема 3. 6. ТЕЛЕОБЪЕКТИВЫ. ОБЪЕКТИВЫ С ПЕРЕМЕННЫМ ФОКУСНЫМ РАССТОЯНИЕМ

Особенности съёмки объективом с переменным фокусным расстоянием. Классификация и принципиальные схемы объективов. Основные требования к объективам с переменным фокусным расстоянием. Современные конструкции объективов с переменным фокусным расстоянием и их технические характеристики.

Тема 3. 7. АНАМОРФОТНЫЕ ОПТИЧЕСКИЕ СИСТЕМЫ

Принцип действия анаморфотных систем. Получение трансформированного изображения. Основные характеристики анаморфотной киносъемочной оптики.

Тема 3. 8. ОПТИКА ТЕЛЕВИЗИОННОЙ И ВИДЕОАППАРАТУРЫ

Классификация современных телевизионных объективов и их параметры. Конструктивные особенности оптических схем телевизионных объективов. Дополнительные аксессуары для расширения функциональных возможностей современных телевизионных объективов. Устройства оптической стабилизации изображения.

3. РАСПРЕДЕНИЕ ЧАСОВ ПО ТЕМАМ И ВИДАМ УЧЕБНОЙ РАБОТЫ

	T	1	1				1	
№ п/п	Наименование раздела, (отдельной темы)	Лекции	Лекции с использованием ДОТ	Лабораторные работы	Практические занятия	Практические с использованием ДОТ	Индивидуальные занятия	Итого
1	ОСНОВЫ ФОРМИРОВАНИЯ ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ	10	0	10	0	0	0	20
1.1	ОСНОВЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ	2	0	2	0	0	0	4
1.2	ИДЕАЛЬНАЯ ОПТИЧЕСКАЯ СИСТЕМА И ЕЁ СВОЙСТВА	2	0	2	0	0	0	4
1.3	ДЕТАЛИ ОПТИЧЕСКИХ СИСТЕМ	2	0	2	0	0	0	4
1.4	ОГРАНИЧЕНИЕ ПУЧКОВ ЛУЧЕЙ В ОПТИЧЕСКИХ СИСТЕМАХ И ОСВЕЩЁННОСТЬ ИЗОБРАЖЕНИЯ В ЦЕНТРЕ И НА КРАЮ	2	0	2	0	0	0	4
1.5	ГЛУБИНА РЕЗКО ИЗОБРАЖАЕМОГО ПРОСТРАНСТВА И ГЛУБИНА РЕЗКОСТИ	2	0	2	0	0	0	4
1	АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ	2	0	2	0	0	0	4
2	ОЦЕНКА КАЧЕСТВА ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ ОБЪЕКТИВА	2	0	2	0	0	0	4
3	СЪЕМОЧНЫЕ ОБЪЕКТИВЫ ДЛЯ ФОТОГРАФИИ, КИНО И ТЕЛЕВИДЕНИЯ	18	0	18	0	0	0	36
3.1	ПРИНЦИПЫ УСТРОЙСТВА И ДЕЙСТВИЯ ОПТИЧЕСКИХ СИСТЕМ, ОБРАЗОВАНИЕ И ВОСПРИЯТИЕ КИНОИЗОБРАЖЕНИЯ	2	0	2	0	0	0	4
3.2	ГЛАЗ КАК ОПТИЧЕСКИЙ ПРИБОР	2	0	2	0	0	0	4
3.3	ФОТОГРАФИЧЕСКИЕ ОБЪЕКТИВЫ	2	0	2	0	0	0	4
3.4	ОСНОВНЫЕ ПАРАМЕТРЫ И СВОЙСТВА КИНОСЪЁМОЧНЫХ ОБЪЕКТИВОВ	2	0	2	0	0	0	4

3.5	ВЛИЯНИЕ ТЕХНИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТИВА НА ХАРАКТЕРИСТИКИ ИЗОБРАЖЕНИЯ	2	0	2	0	0	0	4
3.6	ТЕЛЕОБЪЕКТИВЫ. ОБЪЕКТИВЫ С ПЕРЕМЕННЫМ ФОКУСНЫМ РАССТОЯНИЕМ	2	0	2	0	0	0	4
3.7	АНАМОРФОТНЫЕ ОПТИЧЕСКИЕ СИСТЕМЫ	2	0	2	0	0	0	4
3.8	ОПТИКА ТЕЛЕВИЗИОННОЙ И ВИДЕОАППАРАТУРЫ	4	0	4	0	0	0	8
	ВСЕГО	32	0	32	0	0	0	64

4. ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

№ п/п	Наименование лабораторных работ	Трудоемкость (час.)
1	Тема: «ОСНОВЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ».	2
2	Тема: «ИДЕАЛЬНАЯ ОПТИЧЕСКАЯ СИСТЕМА И ЕЁ СВОЙСТВА».	2
3	Тема: «ДЕТАЛИ ОПТИЧЕСКИХ СИСТЕМ».	2
4	Тема: «ОГРАНИЧЕНИЕ ПУЧКОВ ЛУЧЕЙ В ОПТИЧЕСКИХ СИСТЕМАХ И ОСВЕЩЁННОСТЬ ИЗОБРАЖЕНИЯ В ЦЕНТРЕ И НА КРАЮ».	2
5	Тема: «ГЛУБИНА РЕЗКО ИЗОБРАЖАЕМОГО ПРОСТРАНСТВА И ГЛУБИНА РЕЗКОСТИ».	2
6	Тема: «АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ».	2
7	Тема: «ОЦЕНКА КАЧЕСТВА ОПТИЧЕСКОГО ИЗОБРАЖЕНИЯ ОБЪЕКТИВА».	2
8	Тема: «ПРИНЦИПЫ УСТРОЙСТВА И ДЕЙСТВИЯ ОПТИЧЕСКИХ СИСТЕМ, ОБРАЗОВАНИЕ И ВОСПРИЯТИЕ КИНОИЗОБРАЖЕНИЯ».	2
9	Тема: «ГЛАЗ КАК ОПТИЧЕСКИЙ ПРИБОР».	2
10	Тема: «ФОТОГРАФИЧЕСКИЕ ОБЪЕКТИВЫ».	2
11	Тема: «ОСНОВНЫЕ ПАРАМЕТРЫ И СВОЙСТВА КИНОСЪЁМОЧНЫХ ОБЪЕКТИВОВ».	2
12	Тема: «ВЛИЯНИЕ ТЕХНИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТИВА НА ХАРАКТЕРИСТИКИ ИЗОБРАЖЕНИЯ».	2
13	Тема: «ТЕЛЕОБЪЕКТИВЫ. ОБЪЕКТИВЫ С ПЕРЕМЕННЫМ ФОКУСНЫМ РАССТОЯНИЕМ».	2
14	Тема: «АНАМОРФОТНЫЕ ОПТИЧЕСКИЕ СИСТЕМЫ».	2
15	Тема: «ОПТИКА ТЕЛЕВИЗИОННОЙ И ВИДЕОАППАРАТУРЫ».	2
16	Тема: «ОПТИКА ТЕЛЕВИЗИОННОЙ И ВИДЕОАППАРАТУРЫ».	2

5. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ (СЕМИНАРЫ)

Практические занятия (семинары) по дисциплине «Киносъемочная оптика» в соответствии с учебным планом не предусмотрены.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Оценивание результатов обучения по дисциплине осуществляется в ходе текущего контроля и промежуточной аттестации с использованием балльно-рейтинговой системы.

Оценочные средства в полном объеме представлены в Фонде оценочных средств по дисциплине «Киносъемочная оптика».

Предусмотрены следующие формы и процедуры текущего контроля и промежуточной аттестации:

Вид(ы) текущего контроля	Семестр (курс)
контрольная работа (практикум)	3
выполнение контрольной работы	3
выступление на научной конференции	2
по	
выступление на научной конференции	3
по теме дисциплины	
практикум (выполнение и защита	2,3
лабораторных работ)	
присутствие на занятии	2,3
тест	2,3
Вид(ы) промежуточной аттестации,	Семестр (курс)
курсовые работы/проекты	
зачет с оценкой	2,3

6.1. Оценочные средства для входного контроля (при наличии)

Входной контроль отсутствует.

6.2. Оценочные средства для текущего контроля успеваемости

Контрольная работа проводится в формате практикума.

Тема контрольной работы

1. Влияние параметров съемочного объектива на качество оптического изображения

Примерные тестовые задания для контроля знаний:

Семестр 2:

- 1. Заднее фокусное расстояние линзы f '=500 мм. Чему равна оптическая сила этой линзы?
- а) 2 дптр;
- б) 0,002 дптр;
- в) 0,5 дптр;
- г) 50 дптр.
- 2. На какие параметры изображения влияет величина относительного отверстия объектива?
- а) на степень виньетирования лучей;
- б) на глубину резко изображаемого пространства;
- в) на разрешающую способность изображения;
- г) на освещенность изображения.

- 3. Светосильный объектив это
- а) объектив с относительным отверстием более 1:2,8;
- б) объектив с относительным отверстием менее 1:2,8;
- в) объектив с возможностью изменения диафрагмы на 6 ступеней и более;
- г) объектив с возможностью изменения диафрагмы на 8 ступеней и более.

Семестр 3:

- 1. Что называется глубиной резко изображаемого пространства?
- а) глубина резкости;
- б) расстояние вдоль оптической оси объектива, в пределах которого все объекты изображаются резко;
- в) способность объектива давать резкое изображение в плоскости светочувствительного материала;
- г) наименьшая дистанция фокусировки объектива.
- 2. Как повлияет увеличение фокусного расстояния объектива на глубину резко изображаемого пространства (ГРИП)?
- а) увеличит ГРИП, и передняя граница ГРИП сместится ближе к объективу;
- б) увеличит ГРИП, и передняя граница ГРИП сместится дальше от объектива;
- в) уменьшит ГРИП, и передняя граница ГРИП сместится ближе к объективу;
- г) уменьшит ГРИП, и передняя граница ГРИП сместится дальше от объектива.
- 3. С какой целью на линзы наносятся просветляющие покрытия?
- а) чтобы изменить цветность изображения;
- б) чтобы повысить контраст изображения;
- в) чтобы уменьшить контраст изображения;
- г) чтобы повысить коэффициент пропускания.

6.3. Оценочные средства для промежуточной аттестации

Перечень вопросов для подготовки к зачету с оценкой

2 семестр:

- 1. Основные положения и понятия геометрической оптики (светящаяся точка, световой луч, пучки лучей, действительное и мнимое изображения и др.).
- 2. Принцип Ферма. Законы геометрической оптики.
- 3. Понятие и свойства идеальной оптической системы.
- 4. Линейное, угловое и продольное увеличения оптической системы, их взаимосвязь.
- 5. Кардинальные точки оптической системы.
- 6. Фокусные расстояния, фокальные отрезки, отрезки, определяющие положение главных плоскостей относительно преломляющих поверхностей.
- 7. Построение хода лучей в положительной и отрицательной оптических системах. Вспомогательные лучи.
- 8. Детали оптических систем: плоскопараллельные пластины, призмы, световоды, линзы Френеля.
- 9. Детали оптических систем: линзы, зеркала.
- 10. Виды диафрагм и их назначение в оптических системах. Входной и выходной зрачки.
- 11. Виньетирование в оптических системах и его влияние на освещенность изображения. Коэффициент виньетирования.
- 12. Виньетирование в оптических системах и способы его уменьшения. Действующая часть входного зрачка.
- 13. Классификация аберраций оптических систем. Хроматические аберрации: виды, причины возникновения, способы исправления.
- 14. Классификация аберраций оптических систем. Сферическая аберрация и аберрация кома:

определение, причины возникновения, способы исправления.

- 15. Классификация аберраций оптических систем. Астигматизм и кривизна поверхности изображения: определение, причины возникновения, способы исправления.
- 16. Классификация аберраций оптических систем. Дисторсия: определение, причины возникновения, способы исправления.
- 17. Освещенность оптического изображения.

3 семестр:

- 1. Глаз как оптическая система. Диоптрический аппарат глаза.
- 2. Глаз как оптическая система. Аккомодационный аппарат глаза.
- 3. Глаз как оптическая система. Рецепторный аппарат глаза.
- 4. Оценка качества изображения, даваемого оптической системой. Разрешающая способность.
- 5. Оценка качества изображения, даваемого оптической системой. Функция передачи модуляции.
- 6. Классификация и назначение объективов.
- 7. Основные параметры объективов и их влияние на характеристики изображения.
- 8. Специальные виды объективов: телеобъективы.
- 9. Специальные виды объективов: панкратические объективы.
- 10. Специальные виды объективов: анаморфоты.
- 11. Глубина резко изображаемого пространства (ГРИП). Определение границ ГРИП.
- 12. Глубина резко изображаемого пространства (ГРИП). Факторы, влияющие на ГРИП.
- 13. Глубина резко изображаемого пространства (ГРИП). Методы определения ГРИП.
- 14. Глубина резкости и гиперфокальное расстояние.
- 15. Устройство современного съемочного объектива.
- 16. Основные функциональные узлы, обеспечивающие работу современного съемочного объектива.
- 17. Методы стабилизации оптического изображения при съемке.

6.4. Балльно-рейтинговая система

Оценка успеваемости с применением балльно-рейтинговой системы заключается в накоплении обучающимися баллов за активное, своевременное и качественное участие в определенных видах учебной деятельности и выполнение учебных заданий в ходе освоения дисциплины.

дисциплины.					
Конкретные виды оцениваемой деятельности	Количество баллов за 1 факт (точку) контроля	Количество фактов (точек) контроля	Баллы (максимум)		
Семестр 2					
Обязательная :	аудиторная работа				
Практикум (Выполнение и защита лабораторных работ)	4	8	32		
Присутствие на занятии	2	16	32		
Обязательная сам	иостоятельная работа				
Тест	6	1	6		
Дополнительная аудиторная и самостоятельная работа (премиальные баллы)					
Выступление на научной конференции по	10 1 10				
ИТОГО в рамках текущего контроля	70 баллов				
ИТОГО в рамках промежуточной аттестации	30 баллов				
ВСЕГО по дисциплине за семестр	100 баллов				
Семестр 3	•				
Обязательная	аудиторная работа				
Практикум (Выполнение и защита лабораторных работ)	2	8	16		
Присутствие на занятии	2	16	32		
Обязательная сам	иостоятельная работа				
Выполнение контрольной работы	12 1 12				
Тест	10	1	10		
Дополнительная аудиторная и самос	тоятельная работа (пре	емиальные баллы)			
Выступление на научной конференции по теме дисциплины	e 10 1 10				
ИТОГО в рамках текущего контроля	70 баллов				
ИТОГО в рамках промежуточной аттестации	30 баллов				
ВСЕГО по дисциплине за семестр	100 баллов				

Итоговая оценка по дисциплине выставляется на основе накопленных баллов в ходе текущего контроля и промежуточной аттестации в соответствии с таблицей:

Система оценивания результатов обучения по дисциплине

Шкала по БРС	Отметка о зачете	Оценка за экзамен, зачет с оценкой
85 – 100		отлично
70 – 84	зачтено	хорошо
56 – 69		удовлетворительно
0 – 55	не зачтено	неудовлетворительно

7. УЧЕБНО-МЕТОДИЧЕСКОЕ, ИНФОРМАЦИОННО-ТЕХНИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

7.1. Литература

- 1. Тульева, Н. Н. Киносъемочная оптика [Электронный ресурс] : учебное пособие для студентов всех форм обучения по специальности 55.05.03 "Кинооператорство" / Н. Н. Тульева ; С.-Петерб. гос. ин-т кино и телев. Санкт-Петербург : СПбГИКиТ, 2017. 142 с. Электрон. версия печ. публикации. Режим доступа: по логину и паролю http://books.gukit.ru/pdf/2017/Uchebnaja%
 20literatura/Tuleva Kinosemochnaja optika Ucheb pos 2017/Tuleva Kinosemochnaja optika Ucheb pos 2017.pdf
- 2. Оптика. Световые и экспонометрические характеристики оптических систем [Электронный ресурс] : методические указания по выполнению лабораторных работ. Ч. 1 / С.-Петерб. гос. ун-т кино и тел. ; сост. Н. В. Дашевская [и др.]. СПб. : Изд-во СПбГУКиТ, 2012. 90 с. http://books.gukit.ru/pdf/2013 1/000235.pdf
- 3. Оптика. Световые и экспонометрические характеристики оптических систем [Электронный ресурс] : методические указания по выполнению лабораторных работ для студентов всех технических направлений подготовки дневного, вечернего и заочного факультетов. Ч. 2 / С.-Петерб. гос. ун-т кино и тел. ; сост.: Н. В. Дашевская, В. Ф. Кутузов, Н. Н. Тульева. СПб. : Изд-во СПбГУКиТ, 2012. 25 с. http://books.gukit.ru/pdf/2013 1/000231.pdf
- 4. Прикладная оптика [Текст] : учебное пособие: рекомендовано методсоветом по направлению / ред. Н. П. Заказнов. 3-е изд., стереотип. СПб. : Лань, 2009. 320 с. (и более ранние издания) https://www.gukit.ru/lib/catalog

7.2. Интернет-ресурсы

1.

7.3. Лицензионное и свободно распространяемое программное обеспечение

Microsoft Windows Microsoft Office

7.4. Профессиональные базы данных и информационные справочные системы

Электронный каталог библиотеки СПбГИКиТ. https://www.gukit.ru/lib/catalog

7.5. Материально-техническое обеспечение

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебная аудитория	Рабочее место преподавателя, оборудованное компьютером и мультимедийным проектором. Рабочие места обучающихся. Доска (интерактивная доска) и/или экран.
Помещение для самостоятельной работы обучающихся	Рабочие места обучающихся оборудованные компьютерами с подключением к сети «Интернет» и доступом в электронную информационно-образовательную среду института.

8. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Одним из важнейших видов учебных занятий являются лекции. Они составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, в частности, на вопросах формирования оптического изображения, анализа его качества и особенностях работы различных типов используемых объективов для теле- и видеосъемки. Следует учитывать, что данная дисциплина входит в базовую часть профессионального цикла.

Подготовка лекции непосредственно начинается с разработки преподавателем структуры рабочего лекционного курса по конкретной дисциплине. Руководством здесь должна служить рабочая программа. Учебный план и рабочая программа служат основой разработки рабочего лекционного курса.

После определения структуры лекционного курса по темам можно приступить к подготовке той или иной конкретной лекции. Методика работы над лекцией предполагает примерно следующие этапы:

- выяснение того, что и в каком объёме было изучено студентами ранее по родственным дисциплинам;
- определение места изучаемой дисциплины в учебном процессе подготовки специалиста;
- отбор материала для лекции;
- определение объема и содержания лекции;
- выбор последовательности и логики изложения, составление плана лекции;
- подбор иллюстративного материала;
- выработка манеры чтения лекции.

Отбор материала для лекции определяется ее темой.

Преподавателю следует тщательно ознакомиться с содержанием темы в базовой учебной литературе, которой пользуются студенты, определить объем и содержание лекции. Не следует планировать чтения на лекциях всего предусмотренного программой материала в ущерб полноте изложения основных вопросов. Лекция должна содержать столько информации, сколько может быть усвоено аудиторией в отведенное время.

Лекцию нужно разгружать от части материала, переносить его на самостоятельное изучение. Самостоятельно изученный студентами материал, наряду с лекционным, выносится на зачет с оценкой.

Кроме того, при выборе объема лекции необходимо учитывать возможность «среднего» студента записать ту информацию, которую он должен обязательно усвоить.

Содержание лекции должно отвечать ряду принципов: целостность, научность, доступность, систематичность и наглядность. Следует учесть, что степень сложности лекционного материала должна соответствовать уровню развития и имеющемуся запасу знаний и представлений студентов. Стремясь к доступности изложения, нельзя снижать его научность.

Для систематичности изложения необходимо соблюдение ряда педагогических правил:

- взаимосвязь изучаемого материала с ранее изученным, постепенное повышение сложности рассматриваемых вопросов;
- взаимосвязь частей изучаемого материала;
- обобщение изученного материала;
- стройность изложения материала по содержанию и внешней форме его подачи, рубрикация курса, темы, вопроса.

Лабораторные работы позволяют овладеть техникой экспериментальных исследований и анализа полученных результатов, привитие навыков работы с лабораторным оборудованием, контрольно-измерительными приборами и вычислительной техникой. По выполнении лабораторной работы студенты представляют отчет и защищают его. В целях подготовки к последующим занятиям и итоговому контролю (промежуточной аттестации), защищенные

отчеты, как учебный материал находится у студентов.

Самостоятельная работа студентов является видом учебных занятий и имеет целью закрепления и углубления полученных знаний и навыков, поиск и приобретение новых знаний, а также выполнение учебных заданий, подготовку к предстоящим занятиям, зачету с оценкой.

Самостоятельная работа методически контролируется во время аудиторных занятий. Самостоятельная работа по выполнению заданий преподавателей выполняется студентами с использованием учебных пособий в читальных залах, в компьютерных классах и лабораториях, на кафедрах, дома. Самостоятельная работа может проводиться под руководством преподавателей как вид аудиторного учебного занятия.

Консультации являются одной из форм руководства самостоятельной работой студентов и оказания им помощи в освоении учебного материала. Групповые консультации проводятся в дни и часы, определенные расписанием занятий. Возможны также индивидуальные консультации.

Контроль успеваемости студентов проводится с целью определения уровня их теоретической и практической подготовки, качества выполнения учебных планов и программ обучения.

Закрепление теоретического материала производится путем выполнения контрольных работ.

Изучать разделы дисциплины рекомендуется по темам в соответствии с содержанием рабочей программы дисциплины, придерживаясь следующего порядка:

- 1. Ознакомиться с программой по этой теме.
- 2. Прочитать лекционный материал и страницы рекомендованных учебников, которые раскрывают содержание данной темы. При первом чтении следует уяснять основные положения. При втором чтении следует вносить особо важные положения, схемы, модели, отсутствующие в конспекте. Отметить вопросы, которые оказались непонятными.
- 3. По возможности получить консультацию преподавателя, если непонимание частных вопросов препятствует дальнейшему пониманию дисциплины.
- 4. Изучить материал тщательно, стремясь понять и усвоить основные теоретические положения, закономерности, характеризующие работу того или иного объектива, его возможности и качество изображения при решении различных художественных задач.
- 5. В процессе изучения следует дополнить конспект лекций материалами, облегчающими понимание данной темы. Такой конспект позволит улучшить теоретическую подготовку и сэкономит время при подготовке к зачёту с оценкой.
- 6. В конспекте должны присутствовать следующие материалы:
- оптические схемы различных оптических систем;
- пояснения, касающиеся их технических характеристик, особенностей различных схем, возможности их использования;
- исходные предпосылки для анализа условий работы различных оптических систем;
- краткие выводы по изучаемой теме.

В целом обучение строится по классической схеме изложения материала с последующим закреплением и контролем качества усвоения материала. Для этого в каждой теме предусмотрены блоки: информационные, лабораторные и блоки самоконтроля.

Основные сведения курса изложены в информационных блоках (лекционный материал, рекомендуемая литература).

В блок лабораторных занятий входит комплекс по выполнению, используя методические рекомендации по выполнению. Лабораторная работа считается выполненной полностью после защиты ее преподавателю.

Контроль и самоконтроль проводится в течение всего периода изучения дисциплины. Закрепление теоретического материала производится во время лекций путем тестирования, во время лабораторных занятий при защите лабораторных работ, а также при помощи тестирования. Непосредственное общение студента с преподавателем является наиболее эффективным способом изучения дисциплины.

В методических указаниях по выполнению лабораторных работ приведены контрольные

вопросы для самопроверки понимания данной темы и примеры решения задач.

Зачет с оценкой по теоретической части дисциплины проводится только после успешного выполнения и защиты всего комплекса лабораторных работ.

Успешная сдача зачета с оценкой является подтверждением того, что теоретическое содержание курса освоено, основные практические компетенции сформированы, все предусмотренные программой обучения учебные задания выполнены.